copy pasted
The square-cube law (or cube-square law) is a mathematical principle, applied in a variety of scientific fields, which describes the relationship between the volume and the area as a shape's size increases or decreases. It was first described in 1638 by Galileo Galilei in his Two New Sciences.
This principle states that, as a shape grows in size, its volume grows faster than its area. When applied to the real world this principle has many implications which are important in fields ranging from mechanical engineering to biomechanics. It helps explain phenomena including why large mammals like elephants have a harder time cooling themselves than small ones like mice, and why building taller and taller skyscrapers is increasingly difficult.
biomechanics:
If an animal were isometrically scaled up by a considerable amount, its relative muscular strength would be severely reduced, since the cross section of its muscles would increase by the square of the scaling factor while its mass would increase by the cube of the scaling factor. As a result of this, cardiovascular and respiratory functions would be severely burdened.
As was elucidated by J. B. S. Haldane, large animals do not look like small animals: an elephant cannot be mistaken for a mouse scaled up in size. This is due to allometric scaling: the bones of an elephant are necessarily proportionately much larger than the bones of a mouse, because they must carry proportionately higher weight.
To quote from Haldane's seminal essay On Being the Right Size, "...consider a man 60 feet high...Giant Pope and Giant Pagan in the illustrated Pilgrim's Progress.... These monsters...weighed 1000 times as much as Christian. Every square inch of a giant bone had to support 10 times the weight borne by a square inch of human bone. As the human thigh-bone breaks under about 10 times the human weight, Pope and Pagan would have broken their thighs every time they took a step."
Consequently, most animals show allometric scaling with increased size, both among species and within a species. The giant monsters seen in horror movies (e.g., Godzilla or King Kong) are also unrealistic, as their sheer size would force them to collapse. However, the buoyancy of water negates to some extent the effects of gravity. Therefore, sea creatures can grow to very large sizes without the same musculoskeletal structures that would be required of similarly sized land creatures, and it is no coincidence that the largest animals to ever exist on earth are aquatic animals.
View media item 757797